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Abstract

A noteworthy omission in the development process of common NLP models is the

lack of interactive components. While common downstream applications of large lan-

guage models increasingly involve interacting with humans or other agents in a shared

environment, there remains a gap in infrastructures and approaches for incorporating

interactive machine learning components into the training or inference paradigms of

existing large language models (henceforth referred to as LLMs). The emergence of

reasoning and decision-making capabilities as interesting and desirable behaviors in

such LLMs presents a number of opportunities for designing more benchmarks and

methodologies in the realm of interactive natural language processing.

In this thesis, I discuss WebShop, a benchmark for interactive natural language

processing. – a simulated e-commerce website environment that presents several chal-

lenges for language grounding including understanding compositional instructions,

query (re-)formulation, comprehending and acting on noisy text in webpages, and

performing strategic exploration. Given a text instruction specifying a product re-

quirement, an agent needs to navigate multiple types of webpages and issue diverse

actions to find, customize, and purchase an item. WebShop includes a collection of

over 1, 600 human demonstrations for the task, and training plus evaluation of a di-

verse range of agents are performed using reinforcement learning, imitation learning,

and pre-trained image and language models. The best model achieves a task success

rate of 29%, which outperforms rule-based heuristics (9.6%) but is far lower than

human expert performance (59%). Analysis of agent and human trajectories along

with ablations of various model components provide insights for developing future

agents with stronger language understanding and decision making abilities. Finally,

agents trained on WebShop exhibit non-trivial sim-to-real transfer when evaluated

on amazon.com and ebay.com, indicating the potential value of WebShop towards

developing practical web-based agents that can operate in the wild.
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Chapter 1

Introduction

Recent advances in natural language processing (NLP) and reinforcement learning

(RL) have brought about several exciting developments in agents that can perform

sequential decision making while making use of linguistic context [30, 51, 59]. On

the other hand, large-scale language models like GPT-3 [6] and BERT [11] excel at

traditional NLP benchmarks such as text classification, information extraction and

question answering. While the former set of tasks are limited in their set of linguistic

concepts and prove difficult to scale up, the latter tasks usually contain static, non-

interactive datasets that lack adequate grounding to extra-linguistic concepts [4].

The world wide web (WWW) is a massive, open-domain, interactive environment

that inherently satisfies the first aforementioned requirement through its intercon-

nected set of pages consisting of naturally intertwined text, images and interactive

elements. By being simultaneously scalable, semantic, interactive, dynamic, and

realistic, the web is uniquely different from existing environments for autonomous

agents like games or 3D navigation. While there has been prior work on building

web-based tasks, they either lack depth in the transition and action spaces, or prove

difficult to scale up. Some benchmarks only contain either a single classification

task [39, 47, 31] or interactions containing only a handful of different pages in each

1
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  Instruction:
I'm looking for a small portable folding desk 
that is already fully assembled [...]
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:              $109.0

(Options):  { black, khaki, white }

(Attributes): { steel pipe, no assembly, portable }

(Instruction):  I’m looking for a small portable…u

Reward:
1.0

Buy NowDescription Overview

Figure 1.1: The WebShop environment. A: An example task trajectory in HTMLmode,
where a user can (1) search a query in a search page, (2) click a product item in a
results page, (3) choose a color option in a item page, (4) check item-detail pages
and go back to the item page, and (5) finally buy the product to end the episode
and receive a reward r ∈ [0, 1] (§3.2). B: the results page in simple mode for
agent training and evaluation. The blue text indicates clickable actions and bold text
indicates an action selected by the agent. C: The product notation used in §3.1 with
corresponding examples from the product in A. The attributes Yatt are hidden from
the task performer.

episode [44]. Others propose tasks with longer horizons but are either limited to fol-

lowing hyperlinks for web navigation [36] or require human-in-the-loop feedback due

to the lack of an automated reward function [33].

In this paper, we introduce WebShop (Figure 1.1) – a large-scale interactive web-

based environment for language understanding and decision making – and train au-

tonomous agents to complete tasks on this benchmark. With the goals of being scal-

able and containing realistic language and visual elements, WebShop emulates the

task of online shopping on an e-commerce website, where the agent’s goal is to under-

2



stand a human-provided text instruction and purchase a product to match the spec-

ifications. WebShop contains over one million products scraped from amazon.com,

over 12 thousand crowdsourced instructions, and a diverse semantic action space of

searching text queries and choosing text buttons. It is packaged into a convenient

OpenAI Gym [5] environment and can be rendered in two modes (HTML or simple)

with parallel observation spaces that are easier for human and model gameplay respec-

tively. Rewards are automatically computed using a combination of programmatic

matching functions that consider the attributes, type, options and price of the chosen

product, alleviating the need for human evaluation.

3



Chapter 2

Related Works

Reinforcement learning on the web

Nogueira et. al 2016 [36] introduced WikiNav as a benchmark for RL agents nav-

igating pages, but the task is purely navigational with the actions restricted to either

choosing a hyperlink to follow or deciding to stop. The World of Bits (WoB) bench-

mark [44] enables training of RL agents to complete tasks on webpages using pixel

and Document Object Model (DOM) observations. Several follow-up papers have

tackled MiniWoB using techniques like workflow-guided exploration [29], curriculum

and meta-learning [15], DOM tree representation [21], adversarial environment gener-

ation [16] and large-scale behavioral cloning [20]. However, MiniWoB lacks long-range

decision making across multiple different pages and does not scale easily in terms of

difficulty or size due to its use of low-level mouse clicks and keystrokes as actions. In

contrast, WebShop requires navigating longer paths with context-based action selec-

tion and backtracking, and it uses high-level search and choose actions that are more

scalable and transferable to real settings. While not directly operating on web pages,

AndroidEnv [49] and MoTIF [8] provide environments to train agents for interacting

with apps and services on mobile platforms.

Non-interactive web-based tasks

4



Various supervised classification tasks on webpages have been proposed, including

predicting web elements [39], generating API calls [47, 48, 55] and semantic parsing

into concept-level navigation actions [31]. Perhaps most similar content-wise to our

work is the Klarna product page dataset [19] which contains over 50, 000 product

pages labeled with different element categories for supervised classification. All these

works only consider supervised settings with a single decision, and may require the

definition of web APIs or command templates for each domain. Our benchmark,

WebShop, combines webpages with realistic text and image content with a rich and

diverse interaction space for long-range sequential decision making.

Leveraging the web for traditional NLP tasks

Several papers have explored the use of the web for information extraction [34] and

retrieval [1], question answering [58, 25], dialog [46], and training language models

on webtext [2]. These approaches primarily use web search engines as a knowledge

retriever for gathering additional evidence for the task at hand. Perhaps most similar

to our work is WebGPT [33], which uses a web interface integrated with a search

engine to train RL agents to navigate the web and answer questions. However, our

environment has a more diverse action and observation space (including images) and

does not require human-in-the-loop evaluation.

5



Chapter 3

Environment Formulation

We create WebShop as a large-scale web-based interactive environment with over 1.1

million real-world products scraped from amazon.com. In this environment, an agent

needs to find and purchase a product according to specifications provided in a natural

language instruction. WebShop is designed in a modular fashion which disentangles

the website transitions from the task-specific aspects like instructions and reward,

allowing for easy extension to new tasks and domains.

3.1 Task Formulation

WebShop can be formulated as a partially observable Markov decision process (POMDP)

(S,A, T ,R,U ,O) with state space S, action space A, deterministic transition func-

tion T : S × A → S, reward function R : S × A → [0, 1], instruction space U , and a

state observation space O.

State and action

A state s ∈ S represents a web page, which falls into one of the four types

– the search page that contains a search bar, the results page that lists a set of

products returned by a search engine, the item page that describes a product, or the

item-detail page that shows further information about the product (Figure 1.1A(1-4)

6



Type Argument State → Next State

search [Query ] Search → Results
choose Back to search ∗ → Search
choose Prev/Next page Results → Results
choose [Product title] Results → Item
choose [Option] Item → Item
choose Desc/Overview Item → Item-Detail
choose Previous Item-Detail → Item
choose Buy Item → Episode End

Table 3.1: Actions in WebShop.

Table 3.2: Item rank in search
results when the instruction is
directly used as search query.

respectively). We define the following notations for a product y. We denote ȳ to

be the aggregation of the various text fields including product title, description, and

overview. We denote yprice to be the price, Yopt to be a set of buying options, and I

to be a set of images, each corresponding to a specific option. Finally, each product

is associated with Yatt, a set of attributes hidden from the agent which is extracted

from the title and the item-detail pages. The attributes are used for the automatic

reward calculation.

An action a ∈ A(s) can either be searching a text query (e.g. search[Red shoes])

or choosing a text button (e.g. choose[Size 9]). These two action types are not

available simultaneously – search is only allowed when the agent is at the search

page; on all other pages, click is the only action choice. The chosen action argument

(button) will be clicked as a web link as opposed to the low-level mouse-click actions

in previous environments such as World of Bits [44]. The transitions initiated by

clicks deterministically redirect the web page to one of the four page types. The

transition initiated by search is based on a deterministic search engine (§3.2).

Observation

Using Flask [42] and OpenAI Gym [5], we provide two parallel observation modes

to render the state and instruction S × I → O: (1) HTML mode that contains the

HTML of the web page, allowing for interaction in a web browser(Figure 1.1A),

7



and (2) simple mode which strips away extraneous meta-data from raw HTML into

a simpler format (Figure 1.1B). Note that while the environment allows for training

reinforcement learning agents on raw pixels in HTMLmode (like in [44]), we believe that

it provides a very low-level non-semantic action space. Moreover, it is straightforward

to write a translator that converts any new HTML page into simple format for use

with trained agents, which enables sim-to-real transfer.

Instruction and reward

Each natural language instruction u ∈ U contains the following information: a

non-empty set of attributes Uatt, a set of options Uopt, and a price uprice. The instruc-

tion is generated based on a target product y∗ by human annotators. The instruction

collection process is lightweight and scalable (§3.2). Concretely, Uatt ⊆ Y ∗
att is a subset

of the product attributes, Uopt ⊆ Y ∗
opt is a subset of the product option field-value

pairs, uprice > y∗price is a price set to be higher than the target product price. For

example, the instruction “Can you find me a pair of black-and-blue sneaker that is

good in rain weather? I want it to have puffy soles, and price less than 90 dollars.”

contains the aforementioned attributes Uatt = {“waterproof”, “soft sole”} and option

Uopt = {“color”: “black and blue”}. In each episode, the agent receives a reward

r = R(sT , a) in the end at timestep T , where a = choose[buy], y is the product

chosen by the agent in the final state sT , and Yatt and Yopt are its corresponding

attributes and options. The reward is defined as:

r = rtype ·
|Uatt ∩ Yatt|+ |Uopt ∩ Yopt|+ 1[yprice ≤ uprice]

|Uatt|+ |Uopt|+ 1
(3.1)

where the type reward rtype = TextMatch(ȳ, ȳ∗) is based on text matching heuristics

to assign low reward when y and y∗ have similar attributes and options but are

obviously different types of products. For example, “butter” and “plant-based meat”

differ in types but may both contain attributes “cruelty-free”, “non-GMO”, and an

8



option “size: pack of 2”.

Evaluation metrics

We use two evaluation metrics: (1) Task Score: defined as (100× avg. reward),

which captures the average reward obtained across episodes; and (2) Success Rate

(SR) defined as the portion of instructions where r = 1. Note that it is possible to

obtain r = 1 for an episode even if the final product is not y∗.

3.2 Environment Implementation

Data scraping

We use ScraperAPI [35] to scrape 1, 181, 436 products from amazon.com across 5

categories (fashion, makeup, electronics, furniture, and food) using 113 sub-category

names as queries. The product texts (title and item details) have an average length of

262.9 and a vocabulary size 224, 041 (word frequency higher than 10). In addition, the

products have a total of 842, 849 unique options, reflecting the scale and complexity

of the data.

Search engine

We use Pyserini [28] for the search engine, where indices are built offline using

a BM25 sparse retriever with text for each product concatenated from the title, de-

scription, overview, and customization options. The search engine is deterministic,

which eases imitation learning and result reproducibility.

Attribute mining and annotation

Each product is annotated with a set of hidden attributes, which are used to

represent its latent characteristics as well as to calculate the reward as detailed in

§3.1. An attribute is a short natural language phrase that describes the property of

the product (see examples in Figure 1.1). We mine the attributes by calculating TF-

IDF scores for all bi-grams in the concatenated titles and descriptions based on each

9



product category. We review the top 200 bi-grams for each category, remove the noisy

ones by inspection (decide based on whether the bi-gram is human understandable),

and assign them to the products. We consolidate a pool of 670 attributes.

Natural language instructions

We use Amazon Mechanical Turk (AMT) to collect natural language instructions

that specify goal products with appropriate options. Specifically, an AMT worker

is presented with a sampled goal product, including the product title, category, at-

tributes, and the buying options, and asked to write a command to instruct an au-

tomatic shopping agent to find the target. Workers are instructed to avoid being

too specific such as including the entire title in the instruction, but stay faithful to

describing the target product. We collect a total of 12, 087 linguistically diverse in-

structions with an overall vocabulary size of 9, 036 words and an average length of

15.9 words.

Human demonstrations

We collect trajectories from humans performing the task in the HTML mode of

WebShop to understand the task difficulty for humans and to analyze how humans

would solve the task. We use qualification tests to train and select motivated workers

to perform the task. We recruit and train a total of 13 workers for data collection,

and among them we select the top 7 performing workers to be “experts” (see §7.1

for examples). We also leverage this data to perform imitation learning (described in

§4.2).

3.3 Research Challenges

WebShop brings together several research challenges for autonomous systems from

various subfields in NLP and RL into a single benchmark. These include: 1) genera-

tion of good search queries [22, 60] and reformulation [37, 52], 2) strategic exploration

10



for navigating through the website [56, 57, 29], 3) robust language understanding for

textual state and action spaces [3, 7, 17, 45], and 4) long-term memory for comparing

items or backtracking [54, 13, 23] (Figure 1.1). While we believe individual advances

in each of these will improve agent performance, WebShop also provides an ideal

testbed for the development of interdisciplinary techniques that tackle more than one

of the above mentioned challenges simultaneously. For example, external memory

modules may be very effective if combined with strategic exploration, or exploration

could be helpful in information query reformulation. Further analysis based on human

and model trajectories is in §5.3.
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Chapter 4

Methods

We propose various models that combine language and image pre-training with imi-

tation learning (IL) and reinforcement learning (RL).

4.1 Rule Baseline

A simple rule baseline is to search the exact instruction text, then choose and buy

the first item in the results page without choosing any options. The heavy lifting of

the lexical search engine makes it also a simple non-learnable information retrieval

(IR) baseline, and would lead to a non-trivial attribute reward. However, simple

heuristic rules cannot resolve noisy natural language options, strategically explore, or

learn to generate what to search, so the total reward and task success rate should be

low.

4.2 Imitation Learning (IL)

For the text generation and choice problems presented in WebShop, we propose using

two pre-trained language models to separately learn how to search and choose from

human demonstrations.

12



Imitating human search generation

We frame searching as a sequence-to-sequence text-generation problem: the agent

generates a search action a = search[. . .] given an instruction u without consid-

ering any other context (e.g. past searches, visited items). We use M = 1, 421

instruction-search pairs from 1, 012 training human trajectories to construct a dataset

D = {(u, a)}Mi=1 and fine-tune a BART model [26] parameterized by φ to perform con-

ditional language modeling:

Lsearch = Eu,a∼D [− log πφ(a | u)] (4.1)

Imitating human choice. The choice-based imitation model (Figure 4.1) predicts

a probability distribution over all the available click actions A(o) in observation o

and maximizes the likelihood of the human clicked button a∗ ∈ A(o). We construct

a dataset D′ = {(o,A(o), a∗)}M ′
i=1 of M ′ = 9, 558 samples from the training human

trajectories. We use a 12-layer pre-trained BERT model [10] parameterized by θ to

encode the o into an observation representation of contextualized token embeddings,

and we similarly encode each action. Each action representation is passed into a

cross-attention layer with the observation representation, then mean pooled into a

single vector and multiplied with a matrix W to obtain a scalar score S(o, a). The

policy πθ (a | o,A(o)) is the softmax distribution over action scores S(o, a):

Lchoose = Eo,A(o),a∗∼D′ [− log πθ (a
∗ | o,A(o))] (4.2)

πθ (a | o,A(o)) ∼ exp
(
W�mean

[
cross-attn

(
BERT(o; θ),BERT(a; θ)

)])
(4.3)

Handling Images

To fuse in visual component of the observation in item pages, we use a pre-trained

ResNet-50 [18] to pre-process images across different products and options into a 512

dimensional feature vector, which is then transformed into 768 dimensions with a
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ResNet

Instruction: I want a small 
portable folding desk […]
Title: MENHG Folding Laptop 
Table Bed Desk […] 
Color: [btn] black [/btn] […]

choose[Features]

choose[black]

choose[khaki]

choose[Buy Now]

Attention Fusion Layer

Transformer

MLP

...

︸ ︷︷ ︸

Transformer

mean pool

(weights shared)

choose [ [khaki

= S(o, a)

︸ ︷︷ ︸

a

I u

concat

Figure 4.1: Architecture of our choice-based imitation learning (IL) model. The image
I is passed to a ResNet to obtain the image representation. The instruction text u is
passed to a transformer (initialized with BERT) to obtain the text representations.
The concatenated bi-modal representations are fused with the action representations
using the Attention Fusion Layer. The resulting fused-action representations are
mean-pooled and reduced by an MLP layer to a scalar value S(o, a) denoting the
logit value of the action choose[khaki].

learned linear layer and concatenated to BERT(o) as the observation representation.

Full pipeline

Combining the above during environment interaction, we use the BART model in

the search page to generate the top-5 search queries via beam search and choose a

random one. For other pages, we sample one action from πθ (a | o,A(o)) using the

BERT model. We find these methods useful to encourage diverse actions. In contrast,

an ineffective strategy that uses only the top generated search query or the button

with the highest probability might lead to limited product candidates or being stuck

(e.g. bouncing back and forth between pages).

4.3 Reinforcement Learning (RL)

We also fine-tune the choice-based IL model with online RL (i.e. IL+RL). Prior work

suggests that directly fine-tuning text generation via RL might lead to language

drifting [24] and deteriorated performance. Therefore, we freeze the BART model
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to provide the top-10 search generations as a refined action space for the choice-

based IL model to learn to pick – an inspiration borrowed from previous work in text

games [56] and referential games [24]. We use the policy gradient method [32] with

return-to-go Rt = Eπ[rt+γRt+1] and a learned value baseline V (o) = W�
v BERT(o; θ)

parameterized by {Wv, θ} (the BERT weights are tied with the policy):

LPG = Eπ [− (Rt − V (ot)) log π (at | ot,A(ot))] (4.4)

The value V (o) is learned with an L2 loss Lvalue = (Rt − V (ot))
2. We also add

an entropy loss Lentropy =
∑

a∈A(ot)
πθ

(
at | ot,A(ot)

)
log πθ

(
at | ot,A(ot)

)
to prevent

premature convergence. Our full RL model minimizes the total loss LRL = LPG +

Lvalue + Lentropy.
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Chapter 5

Experiments

5.1 Setup and task verification

We split a total of 12, 087 instructions into an i.i.d. distributed train / development

/ test split of 10, 587 / 1, 000 / 500 instances for all models. While future work can

investigate splits with more generalization gaps (e.g. split by product category), we

will show the i.i.d. split is already challenging for current models. We randomly sample

a subset of the 10, 587 training instructions, then collect 1, 012 human demonstrations

for task verification and imitation learning (IL) and a further 54 demonstrations

from instances in the development set for IL hyperparameter tuning and checkpoint

selection. We also collect human trajectories for all 500 test instructions and report

human and model performances averaged across these 500 instructions.

5.2 Results

Task performance

From Figure 5.1, we observe that the rule baseline obtains a low score of 45.6 and

a very low success rate of 10% since it cannot resolve options specified in language or

explore more products, empirically demonstrating the non-trivial nature of the task.
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LP 
Search

LP
Choice

Human 
Demo

Use 
Reward

    Rule
    IL w/o
    LP Choice ✓ ✓
    IL w/o
    LP Search ✓ ✓
    IL ✓ ✓ ✓
    RL ✓ ✓
    RL (RNN) ✓
    IL+RL ✓ ✓ ✓ ✓

45.6 45.8

59.9
56.0

52.5
55.2

62.4

9.6 10.6

29.126.3

11.2

17.6
28.7

(%)

Figure 5.1: Task scores and Success Rate (%) for our models on the test split of
WebShop over 3 trials. LP Search uses a pre-trained BART model to generate the
search query and IL w/o LP Search uses the rule-based heuristic. LP Choice uses
pre-trained BERT weights to initialize the choice action model and IL w/o LP Choice
trains a Transformer from scratch.

The IL model significantly outperforms the rule baseline on both metrics, achieving a

score of 59.9. Further RL finetuning improves the score to 62.4 while slightly hurting

the success rate (29.1% → 28.7%) (analyzed further in §5.3). We also observe a

significant gap between models and humans – our best model’s success rate (29.1%)

is less than half of expert humans (59.6%) and only 60% of the average human (50%).

This indicates a great room for model improvement by tackling reseach challenges in

WebShop.

IL ablations

Figure 5.1 also contains several ablations that confirm important design choices

for models. When the choice action model for the IL agent is randomly initialized

(IL (w/o LP Choice); LP = language-pretraining), the success rate drops by nearly

two-thirds, indicating the importance of language pre-training for our task. When

the search query generator in the IL agent is replaced by a simple rule, which always

uses the instruction text (IL (w/o LP Search)), both reward and success rate drop

by around 3 points. This suggests the importance to explore by expanding the search

space for exploration, but it is not as critical as learning to choose the right options.

We experiment with incorporating history of one past observation and the last five

actions into the model and find a slight degradation in the score from 59.9 to 57.3,
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Score Count
All Att Opt Type Price State Item Search

Rule 45.6 66.6 0.0 80.5 86.0 3.0 (3 / 3) 1.0 (1 / 1) 1.0 (1 / 1)
IL 59.9 69.3 45.2 86.4 84.0 9.4 (90 / 3) 1.6 (11 / 1) 1.3 (17 / 1)
IL+RL 62.4 74.0 38.9 89.7 88.7 4.5 (5 / 1) 1.0 (1 / 1) 1.0 ( 1 / 1)

Human Expert 82.1 81.8 73.9 94.4 97.7 11.3 (114 / 4) 1.9 (16 / 1) 1.4 (16 / 1)

Table 5.1: Left: Score breakdown. Right: average, maximum, and minimum number
of states visited, items checks, and searches in a trajectory.

suggesting more advanced techniques are needed to leverage past information.

5.3 Analysis

To better understand the differences between the agents and human experts, we

perform several fine-grained analyses. We first break down the overall score into

its four sub-parts according to Eq. (6.1): 1) attribute score (|Uatt ∩ Yatt|/|Uatt|), 2)

option score (|Uopt ∩ Yopt|/|Uopt|), 3) price score (1[yprice ≤ uprice]), and 4) type score

(rtype). We report trajectory statistics such as the average number of states, unique

items visited, and number of searches per episode in Table 5.1 and provide qualitative

examples of the trajectories in Table 5.2.

Human expert vs. agents

Human experts outperform the agents on all score sub-parts (Table 5.1), but the

most significant boost comes from the option score (a 28% gap), revealing that agents

have trouble selecting the correct product options. Humans also have longer trajec-

tories, explore more items and perform more searches than the agents, with a higher

variance, demonstrating their flexibility. Table 5.2 provides some samples trajecto-

ries. In the first example, the human decides to search again after removing ‘inches’,

‘width’, ‘height’, and ‘white’ from the query since product texts often contain abbre-

viated symbols for these terms like ‘”’, ‘w’, and ‘h’. Thus, search generation is

challenging for models since it involves reasoning and adapting to grounded environ-
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Instruction 1

I want to find white blackout shades that are
66 inches in width and 66 inches in height.
They need to be easy to install [...]

Human Actions (r = 1.0, length = 8)
search[ 66 inches in width and 66 inches in
height white shades ]
choose[ item : CALYX... ]
choose[ Back to Search ]

search[ 66 x 66 blackout shades ]
choose[ item : Milin... ]
choose[ opt : 66”w x 66”h ]

choose[ opt : cordless bottom up-blackout-
white ]
choose[ Buy ]

IL+RL Actions (r = 0.2, length = 3)
search[ white blackout shades 65 inches in
width and 66 inches in height ]
choose[ item : Window... ]
choose[ Buy ]

Instruction 2

I need a gingko light and 20”x20” pillow cover
that is hand painted [...]

Human Actions (r = 1.0, length = 17)
search[ gingko light 20”x20” pillow cover
hand painted ]

choose[ item : Maison... ] [...]
choose[ Description ]

choose[ < Previous ]
choose[ Overview ]

choose[ < Previous ] [...]
choose[ item : Maison... ]
choose[ opt : 20”x20” ]

choose[ opt : nudes (gingko light) ]
choose[ Buy ]

IL+RL Actions (r = 0.25, length = 3)
search[ gingko light and 20x20 pillow cover
hand painted ]

choose[ item : UPOOS... ]
choose[ Buy ]

Table 5.2: Two example trajectories (showing only actions) from the human and the
IL+RL model. We omit some human actions from instruction 2 for space and truncate
the item names for readability. Red denotes options and blue denotes attributes.
ments, and ideas from query reformulation [37, 1] could help alleviate this. Agents

also struggle to perform robust semantic matching, which is important in choosing

options that contain noisy paraphrases of instruction spans. In the second example,

the human explores several products first, and decides to return to the first explored

product, demonstrating long-term memory that is lacking in the IL+RL model.

Effect of RL fine-tuning after IL

Table 5.1 also shows that RL fine-tuning adapts the IL model to become more

‘greedy’ and less ‘exploratory’, as the average trajectory length drops from 9.4 to 4.8,

and the model explores fewer items and search queries. As a result, the attribute,

type, and price scores all increase, but option score drops from 45.2 to 38.9. This

points to the need for a better balance exploration with exploitation during RL, e.g. by

using intrinsic bonuses.
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Instr. text IL BART Human expert (first) Human expert (last)

Score 94.9 94.5 94.5 95.5
Success Rate 85.4% 84.2% 85.6% 87.8%

Table 5.3: Task performance with the Choice oracle. first and last refer to the first
and last search queries found in human demonstrations, respectively.

Results with at Choice oracle

To disentangle the effects of learning to search from choosing the right actions,

we construct a Choice oracle that has access to the hidden reward function as well

as hidden attributes and options underlying each product and instruction. A similar

search oracle is also possible but harder to design since the search space is infinite. One

possible oracle is to search for the underlying product name for each instruction, but

that makes choice trivial as the underlying product is then almost always the first

search result. Given a search query, the Choice oracle will perform an exhaustive

search over every result item, try out all combinations of options and finally choose

the best item with options that maximize the reward — meaning each episode will

take hundreds or thousands of steps, as opposed to 4.5 and 11.3 steps on average for

the IL+RL model and human experts (Table 5.1). We use 500 test instructions and

consider four types of search queries: the instruction text (used by rule baseline),

top IL BART generated query (used by all learning models), and the first and last

queries from human experts in each test trajectory (74.8% of the time there is only

one query in the trajectory). Choice oracle improves the success rate of rule heuristics

from 9.6% to 85.4%, and even the human expert success rate from 59.6% to 87.8%

(Table 7.4), confirming that choosing the right actions is indeed a major bottleneck

for current models with great room for improvement. However, using a better search

query is still important even with such a strong Choice oracle, as the last human

search query still outperforms other search queries. This also suggests human experts

improve search query qualities over reformulations.
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5.4 Zero-shot Sim-to-real Transfer

Finally, we conduct a ‘sim-to-real ’ transfer experiment where our models trained on

WebShop are tested on the real-world Amazon (amazon.com) and eBay (ebay.com)

shopping websites without any fine-tuning. We sample 100 test instructions and

deploy 3 WebShop models (rule, IL, IL+RL) to interact with Amazon and eBay,

and manually score each episode based on Eq. (6.1). As shown in Table 5.4, model

performances on the two website are similar to WebShop performances in Figure 5.1,

except for the rule baseline, likely due to the better search engine of Amazon than

WebShop.

Amazon eBay
Score / SR Att Opt Type Price Score / SR Att Opt Type Price

Rule 45.8 / 19% 45.6 38.0 66.2 90.0 31.7 / 7% 62.3 25.9 49.0 67.0
IL 61.5 / 27% 60.7 53.7 85.6 96.0 58.2 / 21% 60.2 52.3 85.1 96.9

IL+RL 65.9 / 25% 71.6 47.0 87.8 100.0 62.3 / 21% 69.1 39.5 91.7 97.0

Human 88.2 / 65% 86.2 76.3 99.0 100.0 79.7 / 40% 80.3 70.1 99.5 100.0

Table 5.4: Zero-shot sim-to-real transfer to Amazon and eBay over 100 test instruc-
tions. The Score / SR (Success Rate) column indicates the overall performance. The
remaining breakdown are in Score.

On amazon.com, IL+RL achieves a Score of 65.9 and SR of 25%, outperforming

the Rule baseline’s Score of 45.8 and SR of 19% by large margin. Similarly, on

ebay.com, IL+RL achieves a Score of 62.3 and SR of 21%, widely outperforming the

Rule baseline’s Score of 31.7 and SR of 7%. These results confirm positive sim-to-

real values of trained agents for real-world web tasks despite domain shifts in data

(products) and dynamics (search engine). We also obtain a human average score

of 88.0 / 79.7 and success rate of 65% / 40% by asking turkers (§3.2) to find the

instructed product on the Amazon and eBay websites respectively. While humans

perform much better than agents, their web interactions are much slower — taking on

average 815 seconds per episode as opposed to < 8 seconds per episode for our IL and

IL+RL models on Amazon. This sim-to-real transfer only requires two minor coding
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additions, suggesting that environments like WebShop are suitable for developing

practical grounded agents to reduce human effort on real-world web tasks. We provide

additional performance and in-depth analysis in §7.4.
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Chapter 6

Extensions

A significant aspect of WebShop’s utility towards model training is its ability to simu-

late real world web domains. This suggests that the WebShop environment should be

realistic, scalable, and faithful to human perceptions towards this task. In this paper,

we identify three key aspects where WebShop falls short on these claims, ultimately

limiting its serviceability as a truly automatic environment. First, the WebShop en-

vironment does not include semantic information that heavily influences how humans

perform the WebShop shopping task. Second, WebShop’s original reward function

consistently over-penalizes a chosen product due to its faulty exact matching crite-

rion, compromising its faithfulness to human evaluation. Third, while WebShop’s

product dataset is collected in a scalable fashion via web scraping, generating cor-

responding instructions relies entirely on human crowd-sourcing; WebShop has 1.18

million real products, but of these, only 12, 087 have corresponding text instructions.

This reliance on human generation does not scale and bottlenecks WebShop’s model

training efficacy.

We put forth improvements to address these three points, demonstrating how

such adjustments collectively make for a semantically richer environment that better

reflects real world platforms and offer a scalable way to generate more instructions
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for model training. First, we solicit and incorporate feedback from an audience of 75

random individuals regarding information missing fromWebShop that would be useful

to completing the shopping task. Ensuring that WebShop captures key semantic

components is fundamental to its main deliverable of constructing agents that can

transfer to real-life settings. Second, we rewrite the automatic reward function’s

matching criteria to look for lexically similar and synonymous tokens when calculating

the attributes and options score components. Our V2 reward function coheres to

human evaluation much more precisely (Original 81.5%, V2 87.7%, Human 89.9%).

Lastly, we train and evaluate several attribute extraction models from a product’s

description. Our t5-3bmodel [41] fine-tuned on 2, 000 training points of [X=product

information, Y=attributes] pairs achieves an accuracy of 72.22%, demonstrating

the potential for high performance at an affordable cost in terms of human data

collection. We then briefly discuss future plans to automate the instruction generation

process. Eliminating the need for human participation in the instruction generation

process is vital to WebShop’s extendibility. As real world platforms evolve, WebShop’s

long term viability for model training hinges on how efficiently the environment,

dataset, and instructions can be updated. Without such automation, WebShop’s

instructions and relevance will wither with time.

We believe that the collection of changes presented in this paper greatly advances

WebShop’s usability as an environment for designing language instructed agents with

imminent real world applications, and our primary goal with this work is to make

WebShop a worthwhile platform for developing web agents to the greater grounded

language research community.
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6.1 Environment

We address areas of improvement for WebShop’s semantic richness and faithfulness

to human evaluation. The collective goal of these changes is to close the gap on

WebShop’s claims and create a training environment that more accurately reflects

real world counterparts.

6.1.1 Reward Function Reformulation

WebShop’s original reward function generates a composite score from calculating the

similarity strictly between two products’ attributes, type, options, and price, with

a custom programmatic matching function per category. Exact matching is used to

score attributes and options. To quantify the faithfulness of the original reward func-

tion, we randomly re-score 100 samples, selected from a pool of trajectories generated

by average and expert Amazon Mechanical Turk (AMT) workers, against a human

criteria. This criteria follows the original reward function with two main modifi-

cations. Instead of exact matching, points are awarded if (1) the picked product’s

attributes, options or type are lexically similar or synonymous with the goal’s prod-

uct information and (2) the desired goal value is not found verbatim anywhere in the

picked product’s descriptions.

The matching criteria consistently overpenalizes a picked product due to its failure

to account for lexical similarities and synonyms that humans would otherwise award.

For instance, given a goal token lightweight, the existing reward function would award

neither light weight (semantically similar) nor easy to carry (synonym). In addition,

the original approach does not reward a goal attribute or option that (1) does not

appear in the picked product’s corresponding category, but (2) does appear elsewhere

in the product’s description. For example, given organic as a desired option, a human

scorer would award points if the picked product contains organic in its title even if or-
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MTurk Type Reward Attribute Options Overall

Average Original 71.7 50.5 72.4
V2 74.1 55.0 74.9
Human 75.3 57.0 76.3

Expert Original 78.1 56.1 81.5
V2 85.2 64.9 87.7
Human 88.2 66.8 89.9

Table 6.1: Reward function verification comparing trajectories generated by average
and expert human MTurk workers.

ganic is not presented as an option. The consistent disparity in the attribute, options,

and overall scores between the Original and Human reward functions, as shown in

Figure 6.1, highlights the over-penalization that manifests from these discrepancies.

We implement a modified reward function that applies lexical and synonym match-

ing for scoring attributes and options along with a comprehensive search of product

information. The new proposed reward function is defined in its entirety as Equa-

tion 6.1.

r = rtype ·
matchattrs(Uatt, Yatt) +matchopts(Uopt, Yopt) + 1[yprice ≤ uprice]

|Uatt|+ |Uopt|+ 1
(6.1)

To determine the faithfulness of the new reward function to human rewarding,

we repeat the aforementioned verification procedure with the new reward function

defined in Equation 6.1 and list the average scores per category in Figure 6.1. We also

re-run imitation learning models discussed in the original WebShop paper. For both

average and expert MTurk worker trajectories, the Attribute, Options, and Overall

scores generated by the V2 reward function are all greater than the Original reward

function scores, but do not exceed the Human benchmarks.

Figure 6.1 reflects our observation that the V2 implementation of automatic scor-

ing reduces over-penalization and is much more faithful to human evaluation. From
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manual checks of 20 trajectories chosen randomly from the pool of 200 scored tra-

jectories, the improvements in these scores can be directly attributed to the lexical

and synonym matching cases. Across all 200 trajectories, there were no instances

where the V2 reward function assigned a score that was greater than the correspond-

ing Human reward function’s score. The remaining gap between the V2 and Human

reward functions can mainly be attributed to lexical versus numeric representations

of numbers (i.e. ”three” and ”3”) or a lack of contextualization when querying for

synonyms (i.e. is ”blue” used as a color or an emotion).

6.1.2 Semantic Details

We surveyed an audience of 75 individuals, each of whom were asked to (1) complete a

single round of the WebShop shopping task, then (2) discuss if there was information

useful for completing a shopping task that was not found in WebShop. The three most

frequent responses were customer ratings and reviews (53 mentions), similar products

(41 mentions), and frequently asked questions (37 mentions). We then implemented

a Reviews tab on the WebShop environment that appears on a product’s item page.

6.2 Scalability

WebShop’s attribute tagging and instruction generation pipelines require human an-

notators. For the attribute tagging task, given a product and a pool of attributes,

a human worker is tasked with assigning relevant attributes to the product. For the

instruction generation task, given a product, including its title, product category,

attributes, and options, a human worker is tasked with constructing a natural lan-

guage query. This human-in-the-loop system is time-consuming, expensive, and also

introduces potential human biases (i.e. varying degrees of knowledge across prod-

uct categories). Furthermore, this methodology lacks robustness to changes in the
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WebShop environment and product dataset. For instance, if new semantic signals

are added to products (i.e. reviews), collecting new instructions that incorporate ad-

ditional details carries a cost that must be paid every time for any future iteration.

Yet, such adaptability would be crucial to WebShop’s long term viability.

To automate the attribute generation task, we fine tune an out-of-box T5 model

[41] to predict attributes from the product information. We train the model at

different sizes on pairs of [X=product information, Y=attributes] drawn from

WebShop’s dataset of products annotated with attributes by MTurk workers. The

product information consists of the title, description, and features. The correspond-

ing label consists of a list of five attributes. We test T5 models of sizes [’small’,

’base’, ’large’, ’3b’] with training sets of size [50, 200, 500, 1000, 2000,

3000, 4000, 5000, 6500, 8000]. The validation and test data sets each contain

1, 000 data points. To evaluate the model’s performance, we calculate accuracy as the

intersection of the predictions and ground truth labels. Figure 6.1 plots each model’s

accuracy at each training set size.

Figure 6.1: Performance of fine tuned T5 models of various sizes on attribution
generation, reformulated as a extractive short-phrase generation task.
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With 2, 000 training points, the t5-3b model achieves an accuracy of 72.22%.

Larger models like t5-large and t5-3b produce structurally and syntactically sound

predictions at 1000 training points. At 2, 000 training points, t5-3b consistently

generates a correctly structured output consisting of five unique attributes. At the

same training set size, as the model size increases, accuracy increases. If this trend

persists, larger models such as t5-11b may offer greater accuracy at an affordable

cost. This reformulation demonstrates promise as an efficient and faithful replacement

for human generation.

The performance of the model on attribute generation is encouraging for future

work towards automating instruction generation. This model could be supplied with

a product’s information, attributes, options, and price, then asked to output a natural

language query. However, such a model might lean towards learning more extractive

practices, which in turn could confine the diversity of the outputted instructions to

a finite set of learned templates. On the other hand, a text generation model with a

similar set of inputs and outputs could potentially devise richer queries at the cost of

requiring more human-produced training data.
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Chapter 7

Appendix

7.1 Environment Details

Product Scraping

We use ScraperAPI [35] to extract publicly available product information from

amazon.com. We use five categories (beauty, food, fashion, furniture, electronics) and

313 associated sub-category names appeared in amazon.com (e.g. “Women’s Loafers

& Slip-Ons” in fashion, “Pendants and Chandeliers” in furniture) to scrape 1, 181, 436

products. We filter products with duplicate titles or product IDs, but do not perform

extra filtering in order to avoid selection bias. Specifically, as amazon.com has its own

content screening process, we did not find any personally identifiable information or

offensive content during random sampling checks.

Products Unique Attributes Avg Attributes Unique Options Avg Options

1,181,436 670 3.1 842,849 0.67

Table 7.1: Product item statistics.

Product Attribute Mining

We use TfidfVectorizer from scikit-learn to extract probable bi-grams as

attributes from product title and descriptions for further annotation. We manually

30



inspect these attributes to keep only the specific and human-readable ones and filter

out the rest. An attribute should be suitable in at least one of the following use: 1)

IsGoodFor, 2) HasA (contains), 3) WhichIs, and 4) IsA. For example, attributes such

as “oz ml” and “men women” will be filtered out since it’s unparsable. On the other

hand, “hair color” will also be filtered since it is not specific enough to fit in the above

4 categories. Attributes such as “dry skin” can fit the IsGoodFor in the context of a

make-up product being good for dry skin.

Search Engine

Each time the agent performs a search, the top 50 items are retrieved and displayed

across five search result pages, where each page contains 10 items and the agent can

use actions choose[Prev/Next page] to navigate across result pages. Figure 3.2 shows

that when searching directly with the instruction text, the corresponding item appears

in the first search page (rank 1-10) nearly 1/3 of the time, but it cannot be found in

any search pages (rank 50+) more than half of the time. This indicates that while the

search engine can decently retrieve items based on lexical matching, directly searching

the instruction is not enough for solving the task, and good query (re)formulation

based on the instruction is important.

Instruction Collection

We collect human written instructions by providing the workers a product in-

cluding the title, product category, and its set of attributes and options (Figure 7.1,

7.2). We conduct qualification task by having each participating workers to work on

2 − 5 examples. We inspect and assign qualification to 213 workers to perform the

instruction writing task. We pay for each example 0.15 dollars. We do not anticipate

any potential participant risk.

Reward Calculation

The type reward rtype consists of 3 elements: 1) course-grain product category

match (c = 1 if matched), 2) fine-grain category match (f = 1 if matched), and
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Figure 7.1: The Amazon Mechanical Turk interface for the instruction writing task.
The green box shows the general instruction for the task and the grey box shows an
concrete example.

3) product title match. Course-grain product category refers to the 5 categories

described in §3.2. Fine-grain category is the chain of categories that the product is

under on the Amazon website. For example, and eye mask sheet would be under the

Beauty & Personal Care > Skin Care > Eyes > Wrinkle Pads & Patches fine-grain

category. The product title refers to ȳ described in §3.1.

rtype =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if TextMatch(ȳ, ȳ∗) = 0

0.1, if TextMatch(ȳ, ȳ∗) < 0.1

0.5, if TextMatch(ȳ, ȳ∗) > 0.2 and c = 1 and f = 1,

1, otherwise

(7.1)
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Figure 7.2: The Amazon Mechanical Turk interface for the instruction writing task.
The blue box shows the actual annotation interface. The worker is required to check
the boxes and write the instructions in the text field before submission.

Here, TextMatch(ȳ, ȳ∗) is a simple string match between the selected product title

text and the goal product title text. We use only the words tagged with PNOUN,

NOUN, and PROPN tags parsed by the SpaCy parser in the title text.

Human Trajectory Collection

We use the HTML environment in Figure 1.1 to collect human trajectories. We

select a pool of 13 workers using qualification tasks where each workers complete 5

examples. The workers that achieve an average reward more than 0.75 are qualified.

The task instruction is shown at the end of Appendix. We observe a pronounced

performance gap between the very high performing workers and average workers.

We use the top 50% of these qualified workers as experts (7 workers in total). We

pay for each completed trajectory 0.7 dollars. In human evaluation, 8 out of the 13

workers participated and 5 among them are in the aformentioned expert pool. The 8

participants achieve an overall score of 75.5 and a success rate of 50.0% We observe

non-negligible variance even within the experts—the best performer achieves a score
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Instruction 1: I would like a stained glass
wall lamp with a bronze finish, and price lower
than 190 dollars.

Human Actions (r = 0.33, length = 4)
search[stained glass wall lamp] click[item-
QCLU Tiffany Style Lamp Sunflower...]
click[wall lamp 3 - 12 inch] click[buy]

Instruction 2
I would like a lead free bracelet birthday cake
jar candle, and price lower than 50.00 dollars.

Human Actions (r = 0.03, len = 4)
search[lead free bracelet birthday cake jar
candle] click[item-Happy Birthday Candle...]
click[8 ounce round tin] click[buy]

Table 7.2: Two examples of failed human trajectories. A common pattern is impa-
tience: after one search (even with correct attributes like the right example) the less
performant worker commits to the first selected item. Often, the item does not con-
tain the desired options even though the item’s title text seem relevant. An expert
worker will recognize the need to select the correct options and go back to refine the
searches, while less performant workers simply commit to the current selected item.

of 87.4 and success rate of 69.5%, while the lowest performing worker achieves a

score of 45.8 and success rate of 10%. The best performing worker also shows better

consistency—drawing at a standard deviation of 2.3 in score, contrasting the lowest

performing counterpart at 3.1. We provide examples of common human failure cases

such as not matching the option/attribute due to impatience (Table 7.2), cautioning

some caveats of the task with human workers.

Reward Verification.

We randomly select 100 samples each from the pools of trajectories generated

by average and expert MTurk workers. Each trajectory is then manually re-scored

against a human criteria; the purpose of this is to determine how representative

the reward function is of a human’s judgment towards whether the chosen product

satisfies the given instructions. The human score calculation procedure exactly follows

the formula laid out in Section 7.1 – the attribute, option, price, and type scores are

individually determined, then aggregated to calculate the overall score – except for one

main modification. Instead of the exact matching approach, points are awarded if (1)

the picked product’s attributes, options, or type are lexically similar or synonymous

with the goal’s product information and (2) the desired value is not found verbatim

anywhere in the picked product’s descriptions. For instance, if the value lightweight
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is specified as a desired attribute for an instruction, but the value easy carry is found

instead in the picked product’s description, then the attribute score for the picked

product is increased to reflect that the lightweight value was found. On the other

hand, if cyan is desired as an option for a goal product, but the user picks blue even

though cyan is available as a choice, then no points are awarded. To ensure the score

is calculated without bias, the original rewards for each trajectory were not compared

with the human evaluation scores until the human evaluation scoring was completed.

For the average trajectories, the automatic task score was 74.9 and our manual

score was 76.3 with a Pearson correlation of 0.856. For expert trajectories, the re-

spective scores were 81.5 and 89.9 with a Pearson correlation of 0.773. Therefore, the

automatic reward seems to provide a reasonably close lower bound to the actual task

performance. We find that for average workers, 87.0% of automatic scores are within

a 10% of the manual score, with the main source of error being synonyms or lexically

similar words that don’t get matched correctly in the automatic reward function.

MTurk Type Reward Function Price Type Attribute Result Overall

Average WebShop 95.0 92.9 71.7 50.5 74.9
Human 95.0 93.8 75.3 57.0 76.3

Expert WebShop 100.0 100.0 78.1 56.1 81.5
Human 100.0 100.0 88.2 66.8 89.9

Table 7.3: Reward Verification Statistics

Table 7.3 reflects our observation that our reward function is similar to a human’s

score, with a consistent tendency to over-penalize the picked product. For every

trajectory’s product, the human score across all categories (e.g. attributes, options)

is always greater than or equal to the original score. This under-scoring is a result of

our reward function’s exact matching criterion. In future work, we hope to improve

our matching functionality such that, within the context of a single product with

respect to the goal instructions, it can identify synonyms and decide whether to

award additional points.
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7.2 Model Details

Cross Attention Layer

Our cross attention layer follows Seo et al. [43]. Denote the i-th contextualized

token embedding from the observation and action to be oi and ai respectively. The

attention between oi and aj is defined as

αij = w1 · oi +w2 · aj +w3 · (oi ⊗ aj) (7.2)

where ⊗ denotes element-wise product and w1,w2,w3 are learnable vectors. The

observation-contextualized vector for j-th action token is then

caj = w5 · leakyRELU(w4 · [aj, cj, aj ⊗ cj,q⊗ cj]) (7.3)

cj =

∑
i exp(αij) · oi∑

i exp(αij)
, q =

∑
j′ exp(maxi αij′)aj′∑
j′ exp(maxi αij′)

(7.4)

We then average pool all caj to derive the action score S(o, a):

S(o, a) = w6 ·
1

na

∑
j≤na

caj ∈ R (7.5)

where na is the number of tokens for action a.

RNN Baseline

Our RNN baseline is inspired by Guo et al. [14], where we use the same attention

layer as described above, but replace the Transformer text encoder with one-layer

bi-directional Gated Recurrent Units (GRU) [9] of hidden dimension 512. Another

difference is that we also add an cross attention between the instruction and action

input word embeddings, as we hypothesize it might help option text matching.
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7.3 WebShop Experiment Details

IL Training Details

The training code for our IL models is adapted from Huggingface’s glue training

example, whose repository is licensed under Apache License 2.0. We use a training

batch size of 1 with 32 gradient accumulation steps, a learning rate of 2× 10−5, and

10 training epochs. The training takes around 2 hours on one RTX 2080 GPU with

a GPU memory of around 10GB.

RL Training Details

We train the RL models using 4 parallel environments for 100, 000 training steps.

The backprogation through time (BPTT) is taken at every 8 steps. We use an Adam

optimizer with a learning rate of 10−5 (for Transformer models) or 5×10−4 (for RNN

models).

For RL models with the Transformer (BERT) architecture, it takes around 27

hours on one RTX 3090 GPU with a GPU memory of around 20GB. For RL models

with the GRU architecture, it takes around 20 hours on one RTX 2080 GPU with a

GPU memory of around 10GB.

To disentangle the effects of learning to search from choosing the right actions,

we construct a Choice oracle that has access to the hidden reward function as well

as hidden attributes and options underlying each product and instruction. Given a

search query, the Choice oracle will perform an exhaustive search over every result

item, try out all available options and finally choose the best item with options that

maximize the reward — meaning each episode will take more than a hundred steps,

as opposed to 4.5 and 11.3 steps on average for the IL+RL model and human experts

(Table 5.1). We use 500 test instructions and consider four types of search queries:

the instruction text (used by rule baseline), top IL BART generated query (used by

all learning models), and the first and last queries from human experts in each test

trajectory. Choice improves the success rate of rule heuristics from 9.6% to 52.6%,
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Instr. IL Human Human
text BART expert

(first)
expert
(last)

Score 79.7 83.0 82.1 84.4
SR 52.6% 57.6% 57.9% 61.0%

Table 7.4: Task performance with the
Choice oracle. first and last refer to the
first and last search queries found in hu-
man demonstrations, respectively.

Rule IL IL+RLHuman

AmazonScore 45.8 61.5 65.9 88.0
SR 19% 27% 25% 65%

eBay Score 31.7 58.2 62.3 79.7
SR 7% 21% 21% 40%

Table 7.5: Zero-shot sim-to-real trans-
fer to Amazon and eBay over 100 test
instructions.

Score SR

IL 60.56 (1.94) 29.00 (2.42)
IL (top-1 search) 61.96 (0.47) 30.80 (0.72)
IL (top-1 choice) 45.10 (3.50) 24.93 (3.14)

Table 7.6: Sampling vs. top-1

and the IL model from 29.1% to 57.6% (Table 7.4), confirming that choosing the

right actions is indeed a major bottleneck for current models with great room for

improvement. However, it does not impact human performance much since they are

likely good at making good choices.

Sampling vs. Top-1

We show comparisons between using beam search vs. top-1 for both the search

model and the choice model in Table 7.6. During testing, the search model uses beam

search to generate top-5 search queries. We randomly and uniformly sample from the

top-5 queries to increase search diversity in case of multiple searches. We conduct

experiments to instead always use the top-1 search, which shows slight performance

improvement (see table below), and we will include the result in the paper. The choice

model has a fixed set of action candidates at each step (e.g. all available buttons),

and we sample from the choice policy what action to take, as always taking the top

action will lead to significantly detorior performances.

Image Ablation

We train 3 trials with different random seeds for both the IL model and the ablated

IL model without images, with performances over 500 test cases (7.7). Removing im-

38



Score SR

IL 60.6 (1.94) 29.0 (2.42)
IL (w/o image) 60.3 (0.47) 28.4 (0.87)

Table 7.7: Image ablations.

age only slightly hurts the overall performance, but significantly reduces the variance.

This is reasonable as our current instruction and reward setups only use textual in-

formation, and we believe future efforts to incorporate visual information into the

task setup will better challenge models’ visual understanding, and make pre-trained

vision-language models such as CLIP more useful.

7.4 Sim-to-real Details

Sim-to-real Transfer Details

To test how well our IL agent trained in WebShop performs on amazon.com (ebay.

com similarly), we wrote a series of scripts that generally achieve two steps - translate

a real Amazon URL into our IL model’s input (text observation, set of valid actions)

and map the model’s output back to a real Amazon URL. The following procedure

is repeated until the IL model generates a ”buy now” action:

• Amazon URL → Amazon HTML → Amazon Page Information: Using Scrap-

erAPI [35], we first get the HTML source code for a given Amazon page, then

extract information relevant to rendering the equivalent page in the WebShop

environment (e.g. title, price, options).

• Amazon Page Information → WebShop HTML → Text Observation: Given

the scraped information, we generate the corresponding WebShop page in HTML

mode, then transform it into a simple mode text observation.

• Amazon Page Information → Valid Action Set: From the scraped information,

we determine what valid actions the model can take (i.e. search[Red shoes],
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choose[Size 9]). This logic is captured as a mapping of page type to permissible

actions.

• Text Observation, Valid Action Set → IL Model → Amazon URL: Given the

text observation and allowed of valid actions, the IL model produces an action.

This action is then used to construct a corresponding Amazon URL via a set

of mapping rules, and the loop is repeated. This continues until the model

generates a ”buy now” action, terminating the loop.

Sim-to-real Transfer Results

The resulting numbers in Table 5.4 closely cohere to the reported numbers of

WebShop found in Figure 5.1, suggesting that the WebShop has promise for devel-

oping grounded agents that can operate on real web environments. Between the two

websites, transfer to Amazon is better than eBay as we note that (i) eBay has a

larger product gap from WebShop, e.g. some item categories like food are disallowed

in eBay. (ii) the eBay search engine seems weaker, and would sometimes display no

results for lengthy instructions. The following Table 7.8 is an example of a trajectory

generated by the IL agent searching on the real Amazon website.

Instruction: I want to find white blackout shades that are 66 inches in width and
66 inches in height. They need to be easy to install..

search[white blackout shades 66 inches in width and 66 inches height, easy to install]
click[item - Easy Up & Down 100% Blackout Pleated Window Shades Temporary
Window Blinds 36in x 64in (Fits Window Width 18”-36”) 2pcs-Pack Operating
with Pull Cord Easy Trimming & Installing] click[features] click[back to search]
search[white blackout shades that are 66 inches in width and 66 inches height]
click[item - Redi Shade Inc 1617201 Original Blackout Pleated Paper Shade Black
36” x 72” 6-Pack] click[¡ prev] click[Shade + Strips, White] click[buy]

Table 7.8: An example trajectory (showing only actions) from the IL agent on the real
Amazon website. We omit instructions and some human actions for instruction and
trim item names for readability. Red denotes options and blue denotes attributes.

It is evident that the exploratory behavior and patterns learned and exhibited

by the agent within the WebShop environment is not lost in this transfer. These
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results point to the opportunity for sim-to-real trained agents to transfer to other

real-world web tasks despite the domain shift in both data (products) and dynamics

(search engine) With that said, the gap between human and model performance also

encourage us to look into expanding on the current limitations in our work regarding

both the model and the WebShop environment.

7.5 Potential Societal Impacts and Limitations

WebShop is designed to minimize human efforts in data collection and processing,

but there are still potential concerns regarding diversity, fairness, and representa-

tion. Developing RL agents that interact with the web also bear safety concerns,

especially when transferring from simulation to real-world websites. We also discuss

other limitations regarding the semantics of current task (instruction/reward).

Diversity and representation in data collection

We chose five common categories from amazon.com and scrape all products using

all subcategories to minimize bias. However, our data is still biased toward the website

country (USA) and website language (English), and may only represent a subset of all

possible products that users potentially want to buy. Having this limitation in mind,

the design of WebShop allows the product data to be easily updated for different

representations of real-world usage.

Bias in data processing

Currently our attribute labeling is manually done and may be biased by the la-

beler’s own experience (e.g.more knowledge toward product attributes like sports

rather than makeup). An more automatic alternative would be to employ trained

NLP models (e.g. relation extraction) to extract product attributes, which might be

less biased than one labeller. Our reward design is general and could be updated to

weight more toward attributes, options, price, etc.
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Safety for developing web agents

Unlike recent work [33] that directly employs agents on the World Wide Web

(WWW), WebShop aims to provide a realistic simulation environment to train agents

in a controllable and safe manner. In our preliminary sim-to-real experiments, the

agent could only update the current webpage’s url in two fixed and safe ways (i.e. search

for results, open an item), and any form sending action (e.g. click options or buy) is

held within the sim-to-real interface for later reward calculation. As a result, only

navigation is done on the real-world website. For future deployment to real-world

websites with more advanced functions, we believe a good specification of possible

model behaviors is key to avoid harmful actions.

Limitations in the current task

Our current instructions are still limited by the attributes and options used. While

attributes are simple and sometimes too generic (e.g. “easy to use”), the options

might get too specific (e.g. “d17(dedicated right, back)”). Therefore, an agent might

sometimes use a special option as cues to find the product, while ignoring other parts

of the instruction. To better leverage images and texts (including reviews written by

human users, which are not used in current work) of products for more semantic and

challenging instructions is an important future direction from WebShop.
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Chapter 8

Conclusions

We have developed WebShop, a new web-based benchmark for sequential decision

making and language grounding, modeled on interaction with an e-commerce web-

site. We performed an empirical evaluation of autonomous agents trained using imi-

tation and reinforcement learning, and demonstrated promising results on sim-to-real

transfer to real-world shopping websites. The qualitative and quantitative analy-

sis of model and human trajectories (§5.3) identified several research challenges in

WebShop and provided insights for future model development by incorporating mul-

tidisciplinary techniques. For example, pre-training with multi-modal data [27, 53],

web hypertext [2], or web instruction-action mapping [38] could help agents better

understand and leverage rich semantics of webpage content, actions, and instruc-

tions. Ideas from query (re)formulation [22, 60, 37, 52] may help agents expand the

range of search exploration, and improved action exploration [40, 12, 50] and mem-

ory [54, 13, 23] mechanisms could help agents make better decisions over the long

horizon and large action space. The modular design of WebShop also allows for new

web tasks and domains to be easily incorporated, which we hope will help shape fu-

ture research into grounded language agents with stronger capabilities for real-world

web interaction.
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